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RELATIONSHIP BETWEEN DETONATION CHARACTERISTICS

AND "N NMR CHEMICAL SHIFTS OF NITRAMINES

Svatopluk Zeman

Department of Theory and Technology of Explosives, University of Pardubice,

CZ-532 10 Pardubice, The Czech Republic, E-mail: svatoplik. zeman@upce.cz

ABSTRACT

The paper presents N NMR chemical shifts 8 of twenty three nitramines out of which
1-nitro-1-azaethylene (DIGEN), 1,3-dinitro-1,3-diazacyclobutane (TETROGEN) and
1,3,5,7,9-pentanitro-1,3,5,7,9-pentaazacyclodecanc  (DECAGEN) have not been
synthesized yet. The corresponding 3 values of these three substances have been predicted.
The relationship has been confirmed between squares of detonation velocities or, as the
casc may be, the detonation heats and & values of nitrogen atoms in nitro group of the
nitramines. This relationship represents a certain form of Evans-Polanyi-Semenov equation
and such it directly specifies the most reactive nitro group of nitramine molecule in the

detonation and, hence, the N-NO; bond primarily split in this process.
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INTRODUCTION

The influence of shock on energetic materials results in adiabatic
compression of the molecular layer struck. According to Klimenko and Dremin'™,
the kinetic energy of the shock in this compression is accumulated through
translational-vibrational relaxation processes by translational and vibrational modes
of molecular crystals of the material within 10" to 10" second. This causes a
considerable quasi-overheating (20000 to 40000 K*) especially of vibration
modes. A nonequilibrium state is established with concomitant primary splitting of
the energetic material into ions and radicals™™. These active particles by chemically
interaction with each other evoke a process of spontaneous spreading of the shock
front in the starting substance, i. e. evoke of second equilibrium stage of detonation
behind the front. This or similar ideas of transformation of low-frequency
vibrations of crystal lattice (acoustic phonons) into high-frequency vibrations
(vibrons), with subsequent spontaneous localization of vibrational energy in the
explosophore groupings'®®', have been applied by a number of authors in their
studies of shock reactivity of energetic materials (for representative papers see

refS' 5-]0.61)

Since middle 1970s, the studies of shock reactivity and chemical
micromechanism of detonation initiation of organic polynitro compounds have also
been adopting the quantum chemistry methods (see e. g. refs.'"?). From the

findings thus obtained it follows that the carrier of this reactivity is nitro group or,
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more specifically, C-NO;, N-NO; or O-NO, bonds'"*. There exist direct
experimental™ S as well as indirect semi-empirical’®*? pieces of evidence for what

has been said.

In the last 10 years, the activities in the area of research of shock reactivity
have been more intensive owing to the technical development in picosecond and/or
femtosecond spectroscopy, supercomputer simulation of electronic states, and
development in molecular dynamics (see e. g. proceedings™). Nevertheless, no
uniform opinion about this problem has been reached yet. This can particularly be
due to the standard of formulation of the starting models for simulations and of
molecular-dynamics studies, but also by the available level of measuring and
computer technique. Beside the above-mentioned methods of ultra-rapid
spectroscopy at dynamic experimental conditions, significant findings also result
from less complex spectral methods using static conditions of measurement.
Sharma et al* using X-ray photoelectron spectroscopy thus obtained very
important findings on the relationship between electron structure of molecules of

energetic materials and their sensitivity’>” on predetonation states of these

" and on their primary splitting by shock wave’****** Qut of other

molecule:
relatively available spectral methods, Owens applied the outputs of 'H NMR
spectroscopy in a study of impact sensitivity of trinitroarenes® Owens also

described a relationship between "H NMR chemical shifts and detonation velocities

of the said compounds™ The application of “C NMR spectroscopy to
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determination of detonation velocities and detonation heats of polynitro arenes and

nitramines is protected by patents*"*.

A relation also found™ between detonation velocities and "N NMR
chemical shifts 8y of nitrogen atoms in nitro groups of five nitramines with rigid

molecules which is described by the following general equation:
X = A*y + B €))

where X is square of detonation velocity, D®. No analogous relationship for '*N
NMR chemical shifts 8, of amino nitrogen atoms, carrying nitro groups, could be
found®. The above relationship (1) is related to the detonation (shock) reactivity of
nitro groups in nitramines and, therefore, it should be applicable to studies of
chemical micromechanism of initiation of detonation of the given substances. The

problem is discussed in the present paper.

METHODS AND PROCEDURES

Characteristics of detonation

The values of detonation velocity, D, of nitramines studied were calculated using
the known relationships of Kamlet and Jacobs® for the maximum theoretical
densities of crystals (i. ¢. for monocrystal). When the heat of formation of the

substance was not available, the D values were obtained using the relationship of
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TABLE 1:

Survey of the nitramines studied, their code designations, velocities of detonation,

D, and heats of explosion, Qp.

Nitramine D Qe

No Chemical name Code design.  (km.s") Note (k).g") Note
1 1-Nitro-1-azaethane MNA 6.70 a 4002 b
2 1,1-Dinitro-1-azaethane MDN 9.05 ¢ 5690 d
3 2-Nitro-2-azapropane DMNA 6.29 a 3817 b
4 1,4-Dinitro-1,4-diazabutane EDNA 842 a 4874 b
5 2,4-Dinitro-2,4-diazapentane  OCPX 7.28 a 4367 b
6 2,4,6-Trinitro-2,4,6- ORDX 8.04 a 4870 b

triazaheptane
7 2,4,6,8-Tetranitro-2,4,6 8- OHMX 868 ¢ 5404 d

tetraazanonane

2,5-Dinitro-2,5-diazahexane =~ DMEDNA 6.42 ¢ 3732 d
9 2,4,7,9-Tetranitro-2,4,7,9- TNADEC 7.92 ¢ 4827 d

tetraazadecane

10 1,9-Diacetoxy-2,4,6,8- AcAn 7.18 c 4280 d
tetranitro-2,4,6,8-
tetraazanonane

11 2,5-Dinitro-2,5-diazahexane- DMNO 7.20 ¢ 4295 d
3,4-dione

12 1-Nitro-1-azaethylene DIGEN 812 c 4978 d

13 1,3-Dinitro-1,3-diaza- TETROGEN 846 a 5236 d
cyclobutane

14 1,3-Dinitro-1,3-diaza- CPX 7.76 ¢ 4708 d
cyclopentane

15 1,4-Dinitro-1,4-diaza- DNDC 675 c 3968 d
cyclohexane

16 1,3,5-Trinitro-1,3,5-triaza- RDX 8.89 a 5481 b
cyclohexane
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Nitramine D Qp

No Chemical name Code design. (km.s') Note (kJ.g") Note

17 1,3,5-Trinitro-1,3,5-triaza- HOMO 8.23 a 500 b
cycloheptane

18 1,3,5,7-Tetranitro-1,3,5,7- HMX 9.13 a 5530 b
tetraazacyclooctane

19 1,3,5,7,9-Pentanitro-1,3,5,7,9- DECAGEN 8.96 a 5620 d
pentaazacyclodecane

20 1,5-Endomethylene-3,7- DPT 6.30 c 3758 b
dinitro-1,3,5,7-tetraaza-
cyclooctane

21 1,5-Diacetyl-3,7-dinitro- DADN 5.81 ¢ 3523 e
1,3,5,7-tetraazacyclooctane

22 4,10-Dinitro-2,6,8,12- TEX 8.47 a 4538 b
tetraoxa-4, 10-diaza-
isowurtzitane

23 2,4,6,8,10,12-Hexanitro- HNIW 9.62 a 595 b
2,4,6,8,10,12-hexaaza-
isowurtzitane

* calculated according to Kamlet and Jacobs™

® calculated according to Pepekin et. al.*

¢ calculated according to Rothstein and Petersen®’
¢ calculated from eqn. (2)

* taken from ref.*®

Rothstein and Petersen®’. The explosion heats Qp were calculated for monocrystals
by means of semi-empirical relationships devised by Pepekin et al.* (values Op
correspond 1o the experimenlall)} determined heat of explosion®™, i. e. to real
values of this). When the heat of formation was not available and also in the case

of nitramines not yet synthesized, the Qp values were obtained from a helpful
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mathematical relationship derived from the corresponding data (faken from ref>')

of forty polynitro compounds in the form

Qp =544.28*D + 12.94*D* - 295 56

@)

with the correlation coefticient r = 0.9332. The values D and Qp obtained by the

said methods, together with the chemical names and code designations of the

nitramines studied, are summarized in Table 1.

TABLE 2:

Survey of results of the "N NMR spectroscopy of the nitramines studied

Data  Nitramine "N NMR Chemical shift (ppm)

No code Position in _Nitrogen atom of group  Ref,

molecule nitro amino

1.1 MNA I- -24.60 -215.89 44
21 MDN 1,1- -388 -89.70 44
31 DMNA 2- -25.84 -215.80 44
41 EDNA 1,4- -26.34 -205.47 a
51 OCPX 24- -28.36 -202.6] a
6.1 ORDX 2,6- -28.49 -202.29 a
62 4- -32.02 -189.90 a
7.1 OHMX 2,8- -28.77 -202.25 a
72 4.6- -34.52 -195.59 a
81 DMEDNA 2,5- -27.83 -209.55 a
91 TNADEC 2,9- -28.44 -202.75 a
9.2 4,7- -29.43 -196.03 a
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Data Nitramine N NMR Chemical shift (ppm)

No code Position in _Nitrogen atom of group  Ref.
molecule nitro amino
10.1 AcAn 2,8- -32.81 -190.52 a
10.2 4,6- -33.38 -188.06 a
11.1 DMNO 2,5- -43.07 -166.78 a
12.1 DIGEN 1- -23.58 -208.52 b
13.1 TETROGEN 1,3- -27.83 -203.62 b
14.1 CPX 1,3- -31.21 -209.01 a
15.1 DNDC 1,4- -26.26 -205.49 a
16.1 RDX 1,3,5- -32.90 -198.10 44
17.1 HOMO 1,5- -33.04 -201.28 a
17.2 3- -34.38 -196.32 a
18.1 HMX 1,3,5,7- -34.70 -199.10 44
19.1 DECAGEN 1,3,5,7,9- -33.25 -197.38 b
20.1 DPT 3,7- -25.30 -203.70 44
21.1 DADN 3,7- -23.70 -205.10 a
22.1 TEX 4,10- -33.40 -197.20 a
23.1 HNIW 2,6,8,12- -40.30 -199.00 58, ¢
232 4,10- -43.40 -179.50 58, c

? results of this paper
® nitramine has not been synthesized yet
¢ values obtained from mesasurements in acetone-d, solution

NMR Spectroscopy.

The "N NMR chemical shifts 8 of the nitramines studied were dbtained
with the help of an AMX-360 Bruker apparatus using the INEPT method. The

samples were dissolved in hexadeuteriodimethyl sulfoxide at a concentration of 0.2
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mol nitramine per | dm® solution. For some of the substances the values of these
shifts were taken from literature***; those of the substances not yet prepared were

predicted. These all 8, and Sy values are summarized in Table 2.

Prediction of N NMR Chemical Shifts Values

The substance not yet prepared (i. e. 12, I3 and 19 in Tuble 1) are of
considerable theoretical interest in the chemistry of nitramines. For the nitramines
13 and 19, the prediction of *N NMR chemical shifts 55 of their amino nitrogen

atoms starts from the equation
T8, = -193.23%n — 20.78 3)

with correlation coefficient r = 0.9999. In this equation 25, is the sum of "N NMR
chemical shifts 8, in the molecules of substances 3, 16 and 18, i. e. in the
nitramines containing ~CH,N(NQO,)- building units in their rigid molecules, and n is
the number of these units in the molecule. The 6, value of nitramine 12 was
obtained”' by menas of its predicted heat of fusion™: first the drop energy E,,
(impact sensitivity) of the given substance was calculated from the relationship
between these heats and E, values of nitramines with rigid molecules, and then
this value was introduced into relationship between E,, and 8, values of the same
nitramines to give the predicted 8, value®® The prediction of "N NMR chemical

shifts 8y of nitrogen atoms of nitro groups started from the analysis of the
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relationship between 8, and Sy values of nitramino groups (made in this work)

which turned out to be describable by the following general form of relationship:
On=a*b,+b @

In the sense of relationship (4), the investigated set of substances falls naturally
into several subsets as it is documented in Table 3. Data of caged molecules of
nitramines 22 and 23 do not correlate with any forms of this equation . The
estimate of 8y values of all the three so far unknown nitramines was based on a
subset C of substances in Table 3. The correctness of choice of particular linear
dependence was verified’' by calculation the activation energies E, of low-
temperature thermolysis of nitramines from the predicted 3y values in the sense of

relation”™™*:

E.=a*dyte &)

and subsequent evaluation of reality of the E, values thus obtained by means of
modified Evans-Polanyi-Semenov equation®(in some cases also by means of

QSPR calculation™).

DISCUSSION

In the present paper, the relationship between detonation velocities D and
values of "N NMR chemicai shifis of nitrogen atoms of nitro groups of the

nitramines studied has been reevaluated to confirm the existence of relation (1), see
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Table 4. In contrast to the preliminary information about this relationship in ref.,
the much broader assortment of substances investigated in the present work (Table
1); the fact that their molecular structures are much more varied (which is still
more important) enables a reasonable interpretation of physical meaning of the

equation discussed.

TABLE 3.

Coeflicients of the individual forms of eqn. (4)’

Group of nitramines Coefficients
No. Structure of data® a b r
A 21,31,51,61,81,92 -0095 -47478 0.9914
B 11,51,61,627191101,102 111 -0374 -104380 0.9899
C 41,581,772 151,161,172 -0.869 -204.740 0.9978
D 6.1,91,18.1,20.1,2I.1 -1.883 -409.710 0.9928
E 141,171,172 -0.248 -83.157 09993

* with exception of a line for group E of nitramines the remain lines have
a common intersection characterized by 8, = -202.4 ppm and 8y = -28.7 ppm.
® data are numbered as in Table 2.

Generally, the square of detonation velocity (D) and explosion heat (Q) in

the Chapman-Jouget plane are interrelated by definiendum®*":

Q=D*{2*¢* + 1)} (6)
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where vy is the polytropy coeflicient whose value for high explosives ranges from
2.79 to 3.48". Hence it is possible to introduce Q for X in equation (1) - see

Table 4: for this case it can be combined with equation (5) to give:
E.=C+a*Q (7

which - in general sense — is a form of Evans-Polanyi-Semenov equation™* (the
heat of reaction AH is instead of () in the original relationships) which was
originally derived for radical substitution reactions. This relationship is valid for
narrow sets of substance structures and it documents that the strength of bond
being split is a decisive factor in the given reaction®"*. It was proved that equation
(7) also holds for the detonation transformation of energetic materials?*"** in
this case then E, means activation energy of low-temperature thermolysis and Q
may be substituted by real explosion heat Qp. The relationship (7) thus modified
not only documents the importance of the bond primarily splitting in detonation of
individual energetic materials, but also signals the identity of chemical mechanism
of primary splitting in low-temperature thermolysis and detonation reactions*"*2
These statements fully agree with the outputis of quantum-chemical studies of

impact and shock reactivities of -organic polynitro compounds''®, with

experimental results of studies of their primary fragmentation by shock wave®?’,
as well as with the findings concerning their low-temperature thermolysis (for a

survey see e. g. ref.>). In comparison the modified relationship (7), equation (1)

makes it possible in a simpler and more concrete way to specify the nitro group
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primarily reacting in detonation, i. e. the N-NO, bond primarily split in the

molecules of nitramines exposed to shock.

As can be seen from Table 4 and Figure | the nitramine set studied falls
into four subsets in the sense of equation (1). This falling for X = D’ is the same as
for X = Qp: with exception of subset IV of nitramines the relationships for D?

possess more close correlation as for Q.

The subset [ involves nitramine 12 and its cyclic polymers (i. e. substances
13, 16, 18 and 19) with rigid molecules and with isochronous nitrogen atoms.
From the potnt of view of electronic densities distribution in their molecules this
subset, with exception of “monomer” 12, represents mitramines with the most

symmetrical molecules from the all substances studied.

The subset II includes the substances which - from the point of view of
molecular structure — cannot be considered integer multiples of a substance 12
molecule although they mostly contain the methylenenitramine grouping in their
flexible (/inear nitramines) or rigid molecules (cyclic nitramines). The flexible
molecules containing more than two nitramino groups (i. e. substances 6, 7 and 9)
correlate with the both linear dependencies of subset I through their 8y values of
nitrogen atoms in “inner” nitramino groups (i. . by data 6.2, 7.2 and 9.2 in Table
2). This fact agrees with the results of study of initial decomposition process of

N-N bond in nitramines which is induced by impact.
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Group of nitramines Coefficients
No. Structure of the for X = D? , for X = Op
group®
A B r A B r
1 1ZL3LI6L s 2966 0996 5463 37055 0.971
18.1, 19.1
I 2.1,31, 5.1,
6.2,72,92,
-3.40 -4466 0983 -14259 237.14 0.964
14.1,15.1, 17,1,
20.1,21.1,22.1,
23.1
I 3.1,8.1,11.1 -0.71 2137 0999 -31.22 29410 0.969
IV 72,102, 18.1 -15.66 -462.45 0987 -659.75 -17367.0 0.999

Downl oaded At:

* data are numbered as in Table 2.

The study was carried out by Kohno et al. on the basis of quantum chemistry and
molecular dynamics® with special reference to nitramines 7 and 18: in connection
with action of impact on a crystal, the intramolecular vibration energy is
transferred into nitramino groups. The linear molecule 7 shows only little
probability of transfer of surplus energy from “inner” to “outer” nitramino
groups®. In the cyclic structure of nitramine 18 this transfer between nitramino -
groups is possible although it is 2.5 to 3.5 times slower as compared with linear

analogues™.
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CHy—CH,
CHg——N——CHy~—N-—CH;—N—CH, N—T

IR I I\
NO, / NO, NO, / C\Hz\ N/cHz \

"outer”
l

(ORDX) Homo)  NO:

"outer’
inner”

FIGURE 2: lllustration of the primary splitting of linear (ORDX - “inner”
nitraminogroup) and non-symmetrical cyclic (HOMO - “outer” nitraminogroup)

nitramines by impact or shock.

Nonsymmetrical cyclic nitramines with triazacycloheptane skeleton in their
molecules (i. e. substances 17 and 23) correlate in the sense of relationship (1) for
subset {1 by their 3y values of “outer” nitramino groups, i. e. by corresponding part
of data 17.1 and 23.1 (Table 2). This reciprocity (see Figure 2) as compared with
linear nitramines is in accordance with the results of studies of impact sensitivity of
the nitro compounds mentioned®*’: in this case the dependence of drop energies
E. on heats of fusion, or on "N NMR chemical shifts of amino nitrogen atoms in
reaction centres of their molecules, or on activation energies E, of their low-
temperature thermolysis have an opposite course for rigid molecules as compared
with the course for flexible molecules of the nitramines studied in refs >
Combined influence of the electronic configuration of reaction centre and

conformational stability of the molecules might be a reason of this finding®"*’.
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The subset ZII involves substances with methylnitramine grouping which is
bonded to “unexplosive” rest of their molecules (i. . to methyl group in substance

3, ethylene bridge in substance 8 and oxaldiy! bridge in substance 11).

The substance subset IV consists of nitramine 12 tetramers, i. e. cyclic
substance 18 and linear analogues 7 and 10. The existence of the subset is again in
accordance with the findings by Kohno et al*: in this case both the linear
nitramines participate in the correlations by their 6y values of “inner” nitramino

groups (see data 7.2 and 10.2 from Table 2).

Data of nitramines I and 4 do not correlate with any forms of equation (1).
Unlike to other nitramines studied these two substances primarily thermolyze by a
bimolecular mechanism*>* (due to an association of their molecules by hydrogen
bonds™). This basic difference and findings of paper® signal an existence of

separate forms of the equation for primary nitramines.

CONCLUSION

The relationship between the square of detonation velocities and "N NMR
chemical shifts of nitrogen atoms of nitro groups in nitramines represented in this
paper by equation (1)** can be considered an analogue of Evans-Polanyi-Semenov
equation®* in its modified form, i. e. as a relationship between activation energies
29315354

of low-temperature thermolysis and detonation heats of energetic materials

These relationships show that the strength of bond primarily homolyzed is a
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decisive factor in detonation of energetic materials inclusive of nitramines.
Relationship (1) directly specifies the most reactive nitro group of nitramine
molecule in the detonation and, hence, the N-NO, bond primarily split in this
process. In linear polynitramines the shock or impact reactivities are connected

with primary splitting of “inner” N-NO, bonds in their molecules. These statements

112-20.27-3 1,56 23,24

perfectly agree with theoretica as well as experimental findings

concerning shock and impact reactivity of this class of polynitro compounds.
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